
Introduction to Computer Graphics
Project stage 3: Interaction & Animation
Group 19

EPFL
31st May, 2014

1/10

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

1 Overview

This report presents our advancement on the third part of the project : interaction and
animation. During all the run of the project, we focused on code architecture and quality
rather than quantity. It would have been impossible to implement every single idea we
had about the project anyway.

We did implement all the basic

2 Implementation

2.1 Basic - Fly through mode

In order to freely �y through our scene, the camera mode free �y provide 3 possible actions:

• go forward/backward.

• turn left/right.

• turn up/down.

To have all possible rotation, the camera has to rotate on virtual axis, see �gure 1 present
the behavior of a user turning up and then right creating a virtual axis of rotation. To

Figure 1: Free �ying rotation example

achieve such rotations,the look at point has to be displaced staying always at equal distance
to the camera position. We proceed this rotation in 3 steps: translate to origin, undo
previous rotations, do new rotations, return to initial placement. Rotations are proceeded
only in two axis, Y and Z, using rotation matrix computed according to inputs angle. A
velocity has been added, the acceleration is gradual until a maximum value, same behavior
for deceleration.

2.2 Basic - FPS exploration mode

The FPS exploration mode has slightly di�erent rotation behavior. Camera's rotations
are expected to reproduce similar e�ect as the head rotation of a human body. In this
purpose the lateral rotations will always be proceeded on a virtual axis parallel to the world
horizontal axis. An example of such behavior is represented �gure 2. Thus, transformation
is simpli�ed for lateral rotations compared to free �ying mode. Vertical rotation stays
similar. In order to have a smooth walk in our scene, the Z component of the camera



Introduction to Computer Graphics
Project stage 3: Interaction & Animation
Group 19

EPFL
31st May, 2014

2/10

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

Figure 2: Fps rotation example

position is equal to the mean of the 24 positions around camera x-y position, avoiding
camera shaking in sharp terrain.

2.3 Advanced - Physically realistic movements

In order to have movement physically more realistic, an acceleration/deceleration has been
added to every movement, body will not instantaneously move. An additional running
function has been added to increase a maximum forward speed higher. A simple jump
function has been created, it uses a sinus to shape the jump z variations. Jumping speed
vary according to the jump stage, beginning/ending of the jump has a higher speed then
higher steps.In the case of jumping from the top of a mountain, the falling speed will reach
a maximum value and keep falling at constant speed until it reach the �oor. While jumping
the trajectory is computed using the action settled just before the jump. For example, if a
user was turning, the rotation will continue during jump making a spinning e�ect, which
will decelerate once the users reach the �oor again.

2.4 Advanced - Camera path control

The camera trajectory has been modeled using cubics Bezier curves, therefor we imple-
mented several computation methods:

• Bezier with 4 control points using de Casteljau algorithm (see �gure 3a)

• subdivision algorithm with 5 splits at 0.5 (very similar result as 4 point de casteljau,
see �gure 3b)

• concatenated Bezier curves with in�nite maximum of Bezier curves (see �gure 3c
and 3d)

In order to observe correctly the Bezier curves, we render every control points and the path
of each curves. The curves can be edited during execution, to know the controls to set it
please refer to section "how to use".

2.5 Advanced - Pictorial camera

On top of the bezier curve, we added a pictorial representation of the camera. This camera
allow the user to previously see what will be the camera path and rotations while moving
along bezier curves. The pictorial camera is shown �gure 4



Introduction to Computer Graphics
Project stage 3: Interaction & Animation
Group 19

EPFL
31st May, 2014

3/10

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

(a) 4 points Bezier (b) Bezier using subdivision al-
gorithm

(c) Two bezier curves concate-
nated

(d) Three bezier curves concate-
nated

Figure 3: Bezier curves

Figure 4: Pictorial camera example

2.6 How to use

Along the project, many di�erent controls has been created to use several functionality, we
will present them in the following section. The user can change exploration modes using
numerical pad:

• Key "1": free �ying exploration mode.

• Key "2": �rst person exploration mode.

• Key "3": camera follow bezier curves.

• Key "4": trackball mode.

2.6.1 Free �ying controls

During free �ying, user can use followings controls:

• Key "W": go forward.



Introduction to Computer Graphics
Project stage 3: Interaction & Animation
Group 19

EPFL
31st May, 2014

4/10

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

• Key "S": go backward.

• Key "A": turn left.

• Key "D": turn right.

• Key "Q": turn up.

• Key "E": turn down.

If during free �ying user press key "ENTER", it will drop a control point to create a
bezier curve, then the controls will be slightly modi�ed: key "W" will increase the distance
between camera and control point, key "S" will decrease this distance and rotation controls
will stay similar. Pressing ENTER again will then set the control point. The user has now
settled 2 control points, when he will change position, a bezier curve preview will be
rendered. At the new location user can press ENTER again to set the 2 last control points
and repeat this operation as much as he wants.

2.6.2 FPS exploration controls

The rotation control stay similar as free �ying exploration with additional controls: key
"X" will start a jump, if at this moment the user was moving, this move will in�uence the
jump. During jump, user can't change rotation or speed until he reach the �oor again.
Key "LEFT SHIFT" while going forward will increase its speed (running).

2.6.3 Bezier curve control

User can freely modify and create new control points with the followings controls:

• Key "Z" : Select next control point to modify.

• Key "U" : add 0.1 to position X.

• Key "J" : remove 0.1 to position X.

• Key "I" : add 0.1 to position Y.

• Key "K" : remove 0.1 to position Y.

• Key "O" : add 0.1 to position Z.

• Key "L" : remove 0.1 to position Z.

• Key "+" : add a new bezier curve at the end of the existing.

• Key "-" : remove bezier curve at the end of the existing.

• Key "7" : Start/stop pictorial camera animation.

During user modi�cations, curve will adapt its shape to respect a continuity constraint.

2.7 Advanced - Water modeling

Water refraction, re�ection and depth



Introduction to Computer Graphics
Project stage 3: Interaction & Animation
Group 19

EPFL
31st May, 2014

5/10

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

For the water re�ection e�ect, we should render the terrain from a �ipped camera position.
The terrain is thus rendered two times. It is rendered a �rst time with the real camera
position to the default framebu�er (screen) and a second time with a �ipped virtual camera
position to a texture which is attached to a framebu�er object. The texture is later used
to render the water surface.

2.8 Advanced - Particle system

The cheapest way to display particles is to use sprites: polygons that face the camera in
any orientation.

As for the heightmap, if we were able to work with OpenGL 4, we could have use compute
shaders instead of an empty vertex shader for this kind of GPGPU computation. It would
have permit us to store particle data in bu�er objects and avoid pingpong storage.

transparency gradient proportional to distance to center : gl_PointCoord particle size
inversely proportional to the squared distance to the camera : gl_pointSize no sorting
with respect to camera distance for transparency : can create weird e�ect if a particle
that is nearer than another gets drawn before. The farther particle will visually seem to
be in front of the nearer. Thanks to particle speed, this won't be visible. Draw a real
�ocon ? not much added value to particle speed Use geometry shader ? Particle texture
? A common technique to solve this is to test if the currently-drawn fragment is near the
Z-Bu�er. If so, the fragment is faded out. However, you'll have to sample the Z-Bu�er,
which is not possible with the �normal� Z-Bu�er. You need to render your scene in a
render target. Alternatively, you can copy the Z-Bu�er from one framebu�er to another
with glBlitFramebu�er.

As we cannot read from a texture and render to it at the same time, we need two velocity
textures. The one used as an input is the one that was rendered to before. At each frame
rendering we exchange the two.

The vertex attribute bu�er contain integers from 0 to nParticles - 1. The attribute is
the index in the particlesPosTex which will allow the particles_render_vshader to
retrieve the particle position. The attribute type is GL_INT. As for the indices to not be
converted to �oating point values, the glVertexAttribIPointer function is used (notice
the I).

The gl_VertexID vertex language input variable is used by the particule_render_vshader
to index the particle textures. 1D texture to store position and velocity. Window and tex-
tures are of size nParticles times 1 pixels.

In our implementation, particles that fall below the water level are reseted to the top and
will fall down again, inde�nitely. In order to keep the aggregate compact and so as it does
not spread out in the space, particles that go too far in x or y direction get moved to the
oder side.

2.9 Advanced - Two simultaneous views

By two simultaneous views, we mean the rendering of the seen from two points of views.
In our case, a control view and a camera view (�g 5). The control view is used to set the
camera path Bézier curve control points and have a global view with an animated pictorial



Introduction to Computer Graphics
Project stage 3: Interaction & Animation
Group 19

EPFL
31st May, 2014

6/10

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

Figure 5: Illustration of our two-view system.

camera. The camera view actually shows what the camera sees. The keyboad ENTER key
can be used to exchange the two views

From an implementation point of view, almost each object of the scene (skybox, terrain,
water, shadowmap, skybox, particles) should be drawn from two di�erent points of view.
They are thus rendered to two FBOs (with attached output texture and depth bu�er)
instead of the default framebu�er (the screen). The Display class eventually uses the
texture to assemble the �nal screen view.

For performance reason, it is crucial to render the two points of view one after the other
as shader program switch is expensive.

• The linear �ltering is only used for the small preview.

• As it creates too much aliasing, the main image is direclty accessed with texelFetch
which does bypass the �ltering.

To produce hight quality rendering, the two views were rendered to multisampled tex-
tures (GL_TEXTURE_2D_MULTISAMPLE), using four samples per pixel. Multisampling, also
known as multisample antialiasing (MSAA), is one method for achieving full-screen an-
tialiasing (FSAA). This technique was introduced by ARB_texture_multisample In order
to improve performance, multi-sampling was disabled for the default framebu�er in the
glfwCreateWindow helper function. It makes no sense to do the multi-sampling twice.

The multi-sampled texture is manually resolved in the post-processing shader.

Depth is renderbu�er as we won't touch it again.

Renderbu�er Objects are OpenGL Objects that contain images. They are created and
used speci�cally with Framebu�er Objects. They are optimized for use as render targets,
while Textures may not be, and are the logical choice when you do not need to sample (i.e.
in a post-pass shader) from the produced image. If you need to resample (such as when
reading depth back in a second shader pass), use Textures instead. Renderbu�er objects
also natively accommodate Multisampling (MSAA).1

1https://www.opengl.org/wiki/Renderbuffer_Object

https://www.opengl.org/wiki/Renderbuffer_Object


Introduction to Computer Graphics
Project stage 3: Interaction & Animation
Group 19

EPFL
31st May, 2014

7/10

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

(a) Automatic resolve (b) Manual resolve (c) No MSAA

Figure 6: Multi-sampling anti-aliasing

3 Improvements on last stage

3.1 Code cleanup

As this hand-in is the last opportunity to modify our code, we put great e�ort in improving
its quality by cleaning it up, including comments. A great job was done to functionalize
shader code. As a side e�ect, we did also discover some little mistakes. We did also refactor
most of the code to encompass our new object oriented architecture introduced in stage 2.
In overall, code quality has greatly improved.

Redeclare the GLSL built-in blocks : gl_PerVertex to be able to use separable program
objects.2

Use glProgramUniform instead of glUniform. The former takes a program ID argument
which indicates in which program it should retrieve the uniform ID. Using this function it
is no more needed to have the program marked as used by glUseProgram.

By testing our code on Window and Linux with a combination of ATI and Nvidia hardware
and drivers, we found quite some interesting corner-cases where the OpenGL speci�cation is
not entirely met. An example is the size of the gl_ClipDistance array of the gl_PerVertex
block. According to the spec3, the

3.2 Vertices object

To achieve better modulation, we have separated the vertices creation code into a class
hierarchy. The Vertices base class is an abstract class, declaring only virtual methods,
which de�nes the interface. The VerticesQuad, VerticesGrid and VerticesSkybox in-
herit from it and implement the generate draw and clean methods which are speci�c to
them. This design allows more than one RenderingContext object to share a Vertices

object. The Terrain and Shadowmap makes use of this. It also o�ers better source code
modularity.

2http://www.geeks3d.com/20130106/nvidia-updates-its-opengl-sdk/
3https://www.opengl.org/sdk/docs/man4/html/gl_ClipDistance.xhtml

http://www.geeks3d.com/20130106/nvidia-updates-its-opengl-sdk/
https://www.opengl.org/sdk/docs/man4/html/gl_ClipDistance.xhtml


Introduction to Computer Graphics
Project stage 3: Interaction & Animation
Group 19

EPFL
31st May, 2014

8/10

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

3.3 Lightning

Phong shading was improperly implemented at stage 2. The material texture was only
used to compute the ambient color. The di�use and specular colors were �xed for all the
terrain. Probably a reminiscent of stage 1. This is now �xed. We �rst retrieve material
color properties from textures. The retrieved color is then split across the three lightnings
(ambient, di�use and specular) with the help of coe�cients which some up to 1. The
specular lightning coe�cient is non-zero for water only. The water uses two normals : a
normalmap for di�use lightning (this is used to create the impression of water movement)
and a (0,0,1) normal for specular lightning (this is used to create the impression of sun
light re�ection).

The light direction was de�ned in stage 2 to be the same for all the vertices. This de�nes it
as a directional light. It was changed to a spot light (or point light in the lightning context),
to be coherent with shadowing. The shadowmap is indeed computed using perspective
projection, not orthographic.

3.4 Shadowmap

We have improved a lot the shadowmap, as it was not yet working properly at Stage 2.
Figure 7 shows how it works by showing the shadowmap, the distance to light and the
rendered terrain for three di�erent light positions. While we were at shadowmap, we also
took the time to test some parameters.

The division by the w component to apply projection should be done before the coordinates
change from (-1,-1)x(1,1) to (0,0)x(1,1). It can thus not be integrated in the lightMVP

matrix and should be computed by the shader. To save computations and GPU memory
bandwidth (passing a vec3 instead of a vec4), this can also be computed by the vertex
shader. The result is then interpolated and passed to the fragment shader. The di�erences
are very small, as shown by �gures 8a and 8b.

The choice of the bias, used when comparing the distance to light with the one stored in
the shadowmap has an impact. A too low value will result in Z-bu�er �ghting (�g. 9a)
while a too big value will result in shadow errors (�g. 9c). A good compromise should be
found (�g. 9b).

Percentage closer �ltering (PCF), a method which sample four neighboring pixels and
return an average of the tests, greatly smooth the transition between shadow and light
regions. Figures 10b and 10a show the same scene with and without PCF. The e�ect on
transitions is clear.

The di�erences between a 32 bits depth bu�er (�g. 10b) or a 16 bits (�g. 10c) depth bu�er
is very little. We have thus chosen 16 bits to save computation time and memory space.

3.5 Heightmap

The heightmap texture was con�gured with the default heuristic for out-of-range values.
This default is to wrap around the texture (GL_REPEAT) which creates artifacts at the
borders of the terrain due to linear �ltering which access neighboring pixels (�g. 11a).
Clamping the texture coordinates (GL_CLAMP_TO_EDGE) to the [0,1] range eliminates the
artifacts (�g. 11b).



Introduction to Computer Graphics
Project stage 3: Interaction & Animation
Group 19

EPFL
31st May, 2014

9/10

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

(a) Shadowmap at position 2 (b) Shadowmap at position 5 (c) Shadowmap at position 7

(d) Distance at position 2 (e) Distance at position 5 (f) Distance at position 7

(g) Terrain at position 2 (h) Terrain at position 5 (i) Terrain at position 7

Figure 7: Shadowmap construction

The heightmap code was also refactored to accommodate our new object oriented architec-
ture. This resulted in a cleaner design and better readability as well as some improvements
of the generic code.

Another improvement of the heightmap code is that the position vector is now a vec2

instead of a vec3 as the vertex z position of a quad is 0 anyway. This saves some GPU
memory bandwidth.

3.6 External Objection addition

We tried to render together an external object (a yellow duck) by loading its 3D mesh. We
did some simple transformation to place it in right position and move linearly.

The re�ection of the duck is also rendered.

4 Results



Introduction to Computer Graphics
Project stage 3: Interaction & Animation
Group 19

EPFL
31st May, 2014

10/10

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

(a) In fragment shader (b) In vertex shader

Figure 8: Coordinates transform

(a) No bias (b) Good value (c) Too big value

Figure 9: Shadowmap with di�erent bias values

(a) 32 bits depth without PCF (b) 32 bits depth with PCF (c) 16 bits depth with PCF

Figure 10: Shadowmap

(a) With artifacts at the border (b) Without artifacts

Figure 11: Heightmap


	Overview
	Implementation
	Basic - Fly through mode
	Basic - FPS exploration mode
	Advanced - Physically realistic movements
	Advanced - Camera path control
	Advanced - Pictorial camera
	How to use
	Free flying controls
	FPS exploration controls
	Bezier curve control

	Advanced - Water modeling
	Advanced - Particle system
	Advanced - Two simultaneous views

	Improvements on last stage
	Code cleanup
	Vertices object
	Lightning
	Shadowmap
	Heightmap
	External Objection addition

	Results

