
Introduction to Computer Graphics
Project stage 1: Terrain generation
Group 19

EPFL
14th Apr, 2014

1/6

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

1 Overview

This report presents our advancement on the �rst part of the project : terrain generation
using procedural methods. Figure 1 shows an example of what our actual code base is
able to generate. All the minimal steps to display a procedurally generated terrain were
successfully completed. We did also implement some other optional suggested methods,
like the multifractal and the simple noise. We still plan to implement more.

Figure 1: Example terrain generated by fractal Brownian motion with H = 1.1, l = 10
and 10 octaves, Perlin basis noise function.

The main di�culties we did encounter during this �rst stage were about the framework.
As for practicals and homeworks everything was set, we did not have any experience on
the various functions used to create, bind or copy data into the various OpenGL object
types. We took a lot of time to �gure out how all this was working together. Now that we
acquired some experience, the implementation of the next steps will surely be facilitated.

We did also loose time with some oddities. Let us give an example. The Perlin noise
permutation table contains values from 0 to 255. It would thus make sense to store them
as a GL_ubyte array and to pass them to the shaders as a 1D texture of internal type
GL_R8UI. No data were however passed. The glsl textureSize built-in function was always
returning a size of 0. After hours of trying to understand why a simple bu�er copy does
not work, we found a little note which said that standard compliant implementations do
not have to exactly match the provided list of internal types and can fall back to other
types1. After trying some other types like GL_R32I we resigned and used GL_R32F at the
expense of 2 bytes per texel. The exact cause of this problem was however not elucidated.

As noted in the hand-out, we add to the fact that OpenGL debugging is hard and time-
consuming. We use a lot of "black box" functions and debugging is not very practical.
This is especially true for glsl and the infrastructure for data passing, as there is nothing
until it works. At least at the beginning. When the infrastructure is in place and an output
bu�er is available, "printf debugging" can be used.

1Explained on the OpenGL wiki.

https://www.opengl.org/wiki/GLAPI/glTexImage1D


Introduction to Computer Graphics
Project stage 1: Terrain generation
Group 19

EPFL
14th Apr, 2014

2/6

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

2 Implementation

2.1 Triangle grid

We �rst generate the �at triangle mesh as a base for our terrain. The implementation is
quite straightforward for a grid of size N ×N as �rst, two VBOs storing the positions of
each vertex and the corresponding faces' indices also are calculated.

We then render it as a triangle mesh by function glDrawElements to get a smooth triangle
mesh (�g. 2d). It is also worth noticing the use of glPolygonMode, which allows us to
render only the triangles' boundaries as shown in �gures 2a, 2b and 2c for N = 8, N = 16
and N = 64, respectively.

(a) Lines with N = 8 (b) Lines with N = 16

(c) Lines with N = 64 (d) Triangles

Figure 2: Triangle grid

2.2 Di�use shading

The terrain generated from displacing each vertex in base triangle grid according to height
map will be applied the di�use shading for better visualization. In short, each vertex will
be colored by the result value of following equation: Idkd(N · L) where Id and kd is the
di�use color of the light source and material, respectively. N is the normal vector at that
vertex and L is the normalized light direction vector.

We de�ne te di�use color of light source and material as well as the light position so except
N , other values are very easy to compute. For calculating normal vector N , we use �nite
di�erence to approximate a gradient vectors ∇x and ∇y along x and y directions. Note
that to compute theses gradients, we need the elevation at four neighboring vertices as
well, which can be done again by looking up on the height map that we generated.



Introduction to Computer Graphics
Project stage 1: Terrain generation
Group 19

EPFL
14th Apr, 2014

3/6

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

Then, the normal vector will be cross product of ∇x and ∇y.

2.3 Heightmap texture

We did �rst construct an heightmap by hand (gen_test_height_map) with a 3x3 pixels
texture to test the displacement procedure of the rendering vertex shader and the height
sensible coloring of the rendering fragment shader (�g. 3a). We then implemented the
texture rendering (gen_height_map). To test the framework, we rendered a simple texture
of 1024x1024 pixels which all have the value of 0.5 (�g. 3b).

(a) Heightmap constructed by hand (b) Simple generated heightmap

Figure 3: Heightmaps

2.4 Perlin noise

We then implemented the Perlin noise in the heightmap fragment shader. As suggested
by the tutorial2, we used a permutation table to generate a pseudo-random number per
square. The Fisher-Yates shu�e3, also known as the Knuth shu�e is unbiased, as long as
the underlying random generator is.

We use the texelFetch function to access the texture by its index instead of the normalized
coordinate.

2.5 Fractal Brownian movement

Figure 4 shows the variety of procedural terrains that can be generated by an unique
method, only by altering the seed of the pseudo-random number generator.

2.6 Turbulence

We also try to implement turbulence, which is very similar to fBm but use absolute value
of noise instead. The result is shown in �gure 5.

2The GPU Gems 2 tutorial given in the hand-out
3Described on Wikipedia.

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter26.html
https://en.wikipedia.org/wiki/Fisher-Yates


Introduction to Computer Graphics
Project stage 1: Terrain generation
Group 19

EPFL
14th Apr, 2014

4/6

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

(a) Seed of 2 (b) Seed of 3 (c) Seed of 4

(d) Seed of 5 (e) Seed of 8 (f) Seed of 10

Figure 4: Example of terrains generated by fractal Brownian motion with H = 1.1, l = 10
and 10 octaves, Perlin basis noise function. Di�erent seeds were used to initialize the
permutation table random shu�e.

Figure 5: Example of terrain generated by the turbulence method.

2.7 Advanced topic : Multifractal

As an enhancement to the fractal Brownian motion, we implemented the multifractal
algorithm. to generate a terrain using Perlin basis noise function or Simplex basis noise
function. Figures 6a and 6b show examples of such generated terrain using Perlin and
Simplex basis noise functions.

2.8 Advanced topic : Simplex noise

For Perlin noise, we leverage on a square grid (4 corners), which is sometimes unnecessary.
Simplex noise, in contrary bases on a simplex grid, which in our 2D case is an equilateral
triangles (see �gure 7a).

Since it would be very computationally expensive to �nd the position of three surrounding
neighbors (colorfully encircled), we can skew the grid so that it can have the shape of
square grid (Figure 7b). Once we skew the grid, it would be every easy to �nd the triangle
we are in by simple test of x and y coordinate (�gure 7c).



Introduction to Computer Graphics
Project stage 1: Terrain generation
Group 19

EPFL
14th Apr, 2014

5/6

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

(a) Perlin noise basis (b) Simplex noise basis

Figure 6: Example of terrains generated by the Multifractal method.

(a) Simplex grid (b) Skewed simplex grid (c) Determine current equilat-
eral

Figure 7: The simplex grid and its skewed version used for constructing Simplex noise.

After retrieving the coordinates of three surrounding corners, we use the same pseudo-
random process as used in Perlin noise to look up for gradient of each corner. Then we
�nd the contribution of each corner, which is proportional to the cube of the distance
(0.5 − x2d − y2d). Here xd and yd is the di�erence in x and y axis from the corner to the
position we are considering. Also, the proportional ratio is the dot product of the random
gradient and the position vector.

Finally, we just sum up the contribution of each corner and scale it by some scalar (in our
case is 80).

Figure 8 shows an example of a terrain generated by the implement simplex noise function.

Figure 8: Example of terrain generated by simplex noise.



Introduction to Computer Graphics
Project stage 1: Terrain generation
Group 19

EPFL
14th Apr, 2014

6/6

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

3 Results

Figure 9 shows a closer look at the rendered triangle mesh.

Figure 9: A closer look at the triangle mesh.


	Overview
	Implementation
	Triangle grid
	Diffuse shading
	Heightmap texture
	Perlin noise
	Fractal Brownian movement
	Turbulence
	Advanced topic : Multifractal
	Advanced topic : Simplex noise

	Results

