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Introduction

Introduction

» Objective: unsupervised representation learning toward the
goal of automatic features extraction.

> Model: we introduce the structured auto-encoder, an hybrid
auto-encoder variant, which preserves the structure of the
data while transforming it in a sparse representation.

> |deas: borrowed from sparse coding and manifold learning.

» Application: the proposed model shall be evaluated through a

classification task. We propose an application in Music
Information Retrieval (MIR).
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Optimization

Auto-encoders

A kind of feed-forward neural network
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Optimization

Assumptions

1. Sparse representation: we make the hypothesis that a set of
sample signals drawn from the same distribution can be
sparsely represented in some frame.

2. Manifold assumption, i.e. structured data: we assume that
the data is drawn from sampling a probability distribution that
has support on or near to a submanifold embedded in the
ambient space.

3. Encoder: we further make the assumption that a simple
encoder can be learned to avoid the need of an optimization
process that extracts the features during testing, i.e. when the
model is trained.
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Definitions

v

A set X = {x;}V; € R™N of N signals of dimensionality n.

v

The set Z = {z;}¥; € R™N of their associated
representations of dimensionality m.

v

A dictionary (frame) D € R"*™ of learning capacity m.

A trainable direct encoder E € R™*",

v
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Linear regression

Find a representation

A signal x € X = span X C R", where X is the subspace spanned
by the input data, is represented by z € R™ with a reconstruction
error ¢ € R".

Model:
x=Dz+e.

Ordinary least squares:

z* = argmin||x — Dz||3 = (D"D)"!D"x.
z
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Sparse coding

Regularize the ill-posed linear regression model

Motivations:
» Succinct representation of the signal, explanatory.
» Easier linear separability due to higher dimensionality (m > n).

Sparse coding:

A
z* = arg min ?de — Dz|j3 + A\.||Z]fo-
z

Basis Pursuit approximation:

A
z" = arg min ?de — Dz|j3 + A\, |Z||1.
z

8/26



Background
Algorithm Model

Related works

Optimization

Dictionary learning

Learn adaptive features

Motivations:
» Hand-crafted features are hard to design.

» Adaptive dictionary leads to more compact representation and
discovery of previously unknown discriminative features.

> A strategy employed in the cortex for visual and auditory
processing.

A
minirgize 7d|]X— DZ|2 + \||Z||,

s.t. Hd,”2 <1l,i=1,...,m.
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Manifold learning

Structured representation

Motivation: exploit the geometrical structure of the data space.

Similarity graph:

[Fo— ¢
wijj = exp —T S [07 1] and ajii = Z Wij .-
j=1

Combinatorial graph Laplacian:

L=A-W, with W= (w;)cR"N and A=(3).
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Manifold learning

Structured representation

The Laplacian as a difference operator on the graph signal y € R":

N
(Ly)i = > wilyi
=1

Promote smoothness on the data manifold by minimizing the
Dirichlet energy:

H(ZLZT) = 30wyl — 53 0

i=1j=1
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Auto-encoder

Train an explicit encoder
Objective function as an energy formulation:

A A A
29X = DZ|E+ A\ )Z|1 + ZE tr(ZLZT) + 28|12 — EX|2.
2 Nl DR 2

£(2)

fd(Z:D) fg(Z) fe(Z»E)

Auto-encoder model.
Given a training set X, fix the hyper-parameters Ay, A\;, A\g, Ae > 0,
construct the graph Laplacian L and

minimize £(Z,D) + £(Z) + f(2Z) + .(Z,E)

ey

sit. ||dill2 <1, [lex]2<1,i=1,...,m k=1,...,n

to learn the model parameters D and E.
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Approximation schemes

Encoder: find the representation z of an unseen sample x.
2* = argmin % [x — Dz[3 + A.Jzl + ¥ (2, Lz) + % |2 — Ex3

Direct: z = arg! min 2¢ ||z — Ex||3 + A;[|z][1 = hx, /2. (Ex) =

where hy is a shrlnkage function.

Decoder: find the reciprocal sample x of a representation z.

x* = argxmin %Hx — Dz|3 + %]z — Ex|3

Direct: X = argmin %Hx — Dz||3 = Dz ~ x*.
X
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Related works

Standard auto-encoders: learn D and E with an ¢; fidelity term
(and non-linear activation functions), without any explicit
regularization on Z.

Sparse auto-encoders: learn D with an ¢, fidelity term and an ¢4
regularization on Z.

Predictive sparse decomposition: add an explicit encoder E (¢
fidelity, non-linear activation) to sparse coding.

Denoising auto-encoders: same model as the standard ones, but
trained with stochastically corrupted data.
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Convex sub-problems

Three inter-dependent but convex sub-problems:
minizmize fa(Z,D) + ,(Z) + f5(Z) + fo(Z,E),
mingnize fg(Z,D) s.t. ||di|[2 <1, i=1,...,m,

minié’nize fe(Z,E) s.t. |lex]2 <1, k=1,....n.

> lteratively solve each sub-problem.

» Several (iterative) methods to solve each of them.
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Proximal splitting

Solve minimize fi(x) + f2(x) where f; is non-smooth and £, is
differentiable with a -Lipschitz continuous gradient V.

Proximity operator: prox,x = mini;nize f(y) + 3lx —yli3.

Forward-backward: x**1 = prox.., (x* —~'Vh(x")).
——

backward step forward step

FISTA is an efficient scheme which exploits variable time steps and
multiple points to achieve an optimal O(1/t?) rate of convergence.
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Sub-problems casting

f(Z) f(Z)
—~ =
For Z: minizmize fa(Z,D) + f,(Z) + f(Z,E) + £,(Z)

» VH(Z) = AgDT(X — DZ) + A\o(Z — EX) + A\ LZ
> B> Ae + AdllDTD2 + AglILl2
> proxﬁ_lfl(Z) = h,\z/ﬁ(Z)

~(0) A(D)

A —
For D (and similarly E): miniDmize ?dHXT —Z™D7||2 +1c(D)

> V(D) = AgZ(XT — Z7DT)
> B> M| ZZ7 2

J— di "
> proxg-17 (D) = {m}izl
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Music genre recognition

v

Problem: automatically recognize the musical genre of an
unknown clip without access to any meta-data.

» Training data: a set of labeled clips.

» Classification accuracy used as a proxy to assess the
discriminative power of the learned representations.

» GTZAN dataset: 1000 30-second audio clips with 100

examples in each of 10 different categories: blues, classical,
country, disco, hiphop, jazz, metal, pop, reggae and rock.
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System

Preprocessing

|Part|y labeled cIips|

Frames

Constant-Q
Transform

Y

Local Contrast
Normalization

Features extraction

Introduction

Algorithm
Application
Conclusion

Music genre recognition
System

Implementation

Results

[ l1zll, | | <z,Lz> | . | Aggregate | :
[ 7] features :
R i
: 5.3 Linear '
: + S| support vector | |
G machine '
[hEx)| | Dz |5;g :
10 5
i1 | Majority voting | :

| Fully labeled clips |

19/26



Music genre recognition
System

Application Implementation
Results

Implementation?

1. Tools: numpy, scipy, matplotlib, scikit-learn, h5py, librosa,
PyUNLocBoX!, IPython notebook, OpenStack lab cluster.

2. Notebooks: model construction, test on images, dataset
conversion to HDF5, pre-processing, graph construction,
auto-encoder model, features extraction, classification and
test, experiments.

3. Performance:

» Optimization for space: avoid copies, modify in place, float32,
store Z as a scipy sparse matrix.
» Optimization for speed: ATLAS/OpenBLAS, float32 (memory

bandwidth), efficient trace, projection in the ball (not on the
sphere), approximate KNN search with FLANN.

'https://github.com/epfl-1ts2/pyunlocbox
*https://github. com/mdeff/dlaudio
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Typical learning
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Figure: Learned dictionary D and representation Z of spectrograms.
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Objective function value

Application
Typical convergence
Sub-problems convergence
— ' Z: data term
— | Z: prior term
—  D: data term
—_— — E:data term
ED 000 00

Objective function value

Iteration number (inner loops)

Objectives convergence

gl2) = [[xDZ]_2"2
hiz) = ||Z-Ex]| 2*2
itz) =1zl .1

@) = triz~TL2)

3 4
Iteration number {outer loop)
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Global convergence
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Sub-problem objectives: £(Z),
f(Z), (D) and f(E).

Sub-objectives: f4(Z, D),
f.(Z,E), £2(Z) and £;(Z).

Global objective f4(Z,D) +
£(Z,E) + £(2) + £(2).
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Experiments

Backed up by simulation reports

1.
2.

© N O AW

10.

Better convergence correlates with higher performance [12i].
Hyper-parameters do not have a huge influence. Only the
order of magnitude is important [12], 12k, 12I, 13h, 13j].
Distance metric (Euclidean or cosine) is not significant [13i].
Decreasing accuracy with increasing noise [13d].

Same optimal Az in the presence of 10% noise [13b].
Training over testing ratio: no edge [13g, ...].
Self-connections make no difference [14a].

Higher performance with a normalized graph Laplacian [14b].
K € [10,20] neighbors is good [14c].

And many others34.

*http://nbviewer.ipython.org/github/mdeff/dlaudio_results
*https://1ts2.epfl.ch/blog/mdeff
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Classification accuracy

Noise level (standard deviation) 0.0 | 0.1 | 0.2
Accuracy using CQT spectrograms [%] | 69.7 | 58.7 | 46.9
Accuracy with Ay = 0 [%)] 75.9 | 57.1 | 42.6
Accuracy with Ay = 100 [%] 78.0 | 65.9 | 51.6

Table: Classification accuracies (mean of 20 10-fold cross-validation) on
a subset of GTZAN: Ngenres = 5 genres, Ngjjps = 100 clips per genre and
Nfames = 149 frames per clip.

» Extracted features increase accuracy by ~ 7% over baseline
for all scenarios.

» Structure increases accuracy by 2% in the absence of noise.

» Structure provides robustness to noise.
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Conclusion

Conclusion

» Conservation of the structure in the data via graph
regularization (the manifold assumption) is able to denoise the
data.

» Reasonable assumptions:
1. The representation is sparse.
2. The representation preserves the structure.
3. The existence of an encoder was not tested by lack of time.

» Ways to improve accuracy:
» Fine-tune the hyper-parameters.
Add complexity to the system, e.g. LCN or individual octaves.
Construct better graphs, e.g. no KNN approximation.
Work on a bigger dataset.
Multiple layers to extract hierarchical features.

vV vy VvVYyYy
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Questions ?
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