
MASTER THESIS
Major in Information Technologies

Structured Auto-Encoder
with application to

Music Genre Recognition

Student
Michaël Defferrard
Professor
Pierre Vandergheynst

Supervisors
Xavier Bresson
Johan Paratte

EPFL LTS2 Laboratory
July 3, 2015



Introduction
Algorithm

Application
Conclusion

Introduction

I Objective: unsupervised representation learning toward the
goal of automatic features extraction.

I Model: we introduce the structured auto-encoder, an hybrid
auto-encoder variant, which preserves the structure of the
data while transforming it in a sparse representation.

I Ideas: borrowed from sparse coding and manifold learning.

I Application: the proposed model shall be evaluated through a
classification task. We propose an application in Music
Information Retrieval (MIR).
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Auto-encoders
A kind of feed-forward neural network
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Assumptions

1. Sparse representation: we make the hypothesis that a set of
sample signals drawn from the same distribution can be
sparsely represented in some frame.

2. Manifold assumption, i.e. structured data: we assume that
the data is drawn from sampling a probability distribution that
has support on or near to a submanifold embedded in the
ambient space.

3. Encoder: we further make the assumption that a simple
encoder can be learned to avoid the need of an optimization
process that extracts the features during testing, i.e. when the
model is trained.
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Definitions

I A set X = {xi}Ni=1 ∈ Rn×N of N signals of dimensionality n.

I The set Z = {zi}Ni=1 ∈ Rm×N of their associated
representations of dimensionality m.

I A dictionary (frame) D ∈ Rn×m of learning capacity m.

I A trainable direct encoder E ∈ Rm×n.
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Linear regression
Find a representation

A signal x ∈ X = spanX ⊂ Rn, where X is the subspace spanned
by the input data, is represented by z ∈ Rm with a reconstruction
error ε ∈ Rn.

Model:
x = Dz + ε.

Ordinary least squares:

z∗ = argmin
z
‖x−Dz‖22 = (DT D)−1DT x.
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Sparse coding
Regularize the ill-posed linear regression model

Motivations:
I Succinct representation of the signal, explanatory.
I Easier linear separability due to higher dimensionality (m > n).

Sparse coding:

z∗ = argmin
z

λd
2 ‖x−Dz‖22 + λz‖z‖0.

Basis Pursuit approximation:

z∗ = argmin
z

λd
2 ‖x−Dz‖22 + λz‖z‖1.
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Dictionary learning
Learn adaptive features

Motivations:
I Hand-crafted features are hard to design.
I Adaptive dictionary leads to more compact representation and

discovery of previously unknown discriminative features.
I A strategy employed in the cortex for visual and auditory

processing.

minimize
Z,D

λd
2 ‖X−DZ‖2F + λz‖Z‖1

s.t. ‖di‖2 ≤ 1, i = 1, . . . ,m.
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Manifold learning
Structured representation

Motivation: exploit the geometrical structure of the data space.

Similarity graph:

wij = exp
(
−‖xi − xj‖22

2σ2

)
∈ [0, 1] and aii =

N∑
j=1

wij .

Combinatorial graph Laplacian:

L = A−W, with W = (wij) ∈ RN×N and A = (aij).
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Manifold learning
Structured representation

The Laplacian as a difference operator on the graph signal y ∈ RN :

(Ly)i =
N∑

j=1
wij(yi − yj).

Promote smoothness on the data manifold by minimizing the
Dirichlet energy:

tr(ZLZT ) =
N∑

i=1

N∑
j=1

wij‖zi − zj‖22 ≥ 0.
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Auto-encoder
Train an explicit encoder

Objective function as an energy formulation:
λd
2 ‖X−DZ‖2F︸ ︷︷ ︸

fd (Z,D)

+λz‖Z‖1︸ ︷︷ ︸
fz (Z)

+
λg
2 tr(ZLZT )︸ ︷︷ ︸

fg (Z)

+
λe
2 ‖Z− EX‖2F︸ ︷︷ ︸

fe(Z,E)

.

Auto-encoder model.
Given a training set X, fix the hyper-parameters λd , λz , λg , λe ≥ 0,
construct the graph Laplacian L and

minimize
Z,D,E

fd(Z,D) + fz(Z) + fg(Z) + fe(Z,E)

s.t. ‖di‖2 ≤ 1, ‖ek‖2 ≤ 1, i = 1, . . . ,m, k = 1, . . . , n

to learn the model parameters D and E.
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Approximation schemes

Encoder: find the representation z of an unseen sample x.
z∗ = argmin

z
λd
2 ‖x−Dz‖22 + λz‖z‖1 + λg

2 〈z,Lz〉+ λe
2 ‖z− Ex‖22

Direct: z̃ = argmin
z

λe
2 ‖z− Ex‖22 + λz‖z‖1 = hλz/λe (Ex) ≈ z∗

where hλ is a shrinkage function.

Decoder: find the reciprocal sample x of a representation z.
x∗ = argmin

x
λd
2 ‖x−Dz‖22 + λe

2 ‖z− Ex‖22

Direct: x̃ = argmin
x

λd
2 ‖x−Dz‖22 = Dz ≈ x∗.
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Related works

Standard auto-encoders: learn D and E with an `2 fidelity term
(and non-linear activation functions), without any explicit
regularization on Z.

Sparse auto-encoders: learn D with an `2 fidelity term and an `1
regularization on Z.

Predictive sparse decomposition: add an explicit encoder E (`2
fidelity, non-linear activation) to sparse coding.

Denoising auto-encoders: same model as the standard ones, but
trained with stochastically corrupted data.
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Convex sub-problems

Three inter-dependent but convex sub-problems:

minimize
Z

fd(Z,D) + fz(Z) + fg(Z) + fe(Z,E),

minimize
D

fd(Z,D) s.t. ‖di‖2 ≤ 1, i = 1, . . . ,m,

minimize
E

fe(Z,E) s.t. ‖ek‖2 ≤ 1, k = 1, . . . , n.

I Iteratively solve each sub-problem.
I Several (iterative) methods to solve each of them.

15 / 26



Introduction
Algorithm

Application
Conclusion

Background
Model
Related works
Optimization

Proximal splitting

Solve minimize
x

f1(x) + f2(x) where f1 is non-smooth and f2 is
differentiable with a β-Lipschitz continuous gradient ∇f2.

Proximity operator: proxf x = minimize
y

f (y) + 1
2‖x− y‖22.

Forward-backward: xt+1 = proxγt f1︸ ︷︷ ︸
backward step

(
xt − γt∇f2(xt)

)︸ ︷︷ ︸
forward step

.

FISTA is an efficient scheme which exploits variable time steps and
multiple points to achieve an optimal O(1/t2) rate of convergence.
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Sub-problems casting

For Z: minimize
Z

f2(Z)︷ ︸︸ ︷
fd(Z,D) + fg(Z) + fe(Z,E)+

f1(Z)︷ ︸︸ ︷
fz(Z)

I ∇f2(Z) = λdDT (X−DZ) + λe(Z− EX) + λgLZ
I β ≥ λe + λd‖DT D‖2 + λg‖L‖2
I proxβ−1f1(Z) = hλz/β(Z)

For D (and similarly E): minimize
D

f2(D)︷ ︸︸ ︷
λd
2 ‖X

T − ZT DT‖2F +
f1(D)︷ ︸︸ ︷
ιC (D)

I ∇f2(D) = λdZ(XT − ZT DT )

I β ≥ λd‖ZZT‖2
I proxβ−1f1(D) =

{
di

max(1,‖di‖2)

}m

i=1

17 / 26



Introduction
Algorithm

Application
Conclusion

Music genre recognition
System
Implementation
Results

Music genre recognition

I Problem: automatically recognize the musical genre of an
unknown clip without access to any meta-data.

I Training data: a set of labeled clips.

I Classification accuracy used as a proxy to assess the
discriminative power of the learned representations.

I GTZAN dataset: 1000 30-second audio clips with 100
examples in each of 10 different categories: blues, classical,
country, disco, hiphop, jazz, metal, pop, reggae and rock.
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System

z

Frames

Constant-Q
Transform

Local Contrast
Normalization

Scaling

Aggregate
features

Linear
support vector

machine

Majority voting

Partly labeled clips

Fully labeled clips

F
ea

tu
re

s 
ex

tr
ac

tio
n

C
la

ss
ifi

ca
tio

n

h(Ex) Dz

x

||z||
1 <z,Lz>

P
re

pr
oc

es
si

ng

19 / 26



Introduction
Algorithm

Application
Conclusion

Music genre recognition
System
Implementation
Results

Implementation2

1. Tools: numpy, scipy, matplotlib, scikit-learn, h5py, librosa,
PyUNLocBoX1, IPython notebook, OpenStack lab cluster.

2. Notebooks: model construction, test on images, dataset
conversion to HDF5, pre-processing, graph construction,
auto-encoder model, features extraction, classification and
test, experiments.

3. Performance:
I Optimization for space: avoid copies, modify in place, float32,

store Z as a scipy sparse matrix.
I Optimization for speed: ATLAS/OpenBLAS, float32 (memory

bandwidth), efficient trace, projection in the ball (not on the
sphere), approximate KNN search with FLANN.

1https://github.com/epfl-lts2/pyunlocbox
2https://github.com/mdeff/dlaudio
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Typical learning

(a) m = 128 atoms of a learned
dictionary.

(b) A learned sparse (20% of non-zero coefficients)
representation.

Figure: Learned dictionary D and representation Z of spectrograms.
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Typical convergence

I Sub-problem objectives: f2(Z),
f1(Z), f2(D) and f2(E).

I Sub-objectives: fd(Z, D),
fe(Z, E), fz(Z) and fg(Z).

I Global objective fd(Z, D) +
fe(Z, E) + fz(Z) + fg(Z).
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Experiments
Backed up by simulation reports

1. Better convergence correlates with higher performance [12i].
2. Hyper-parameters do not have a huge influence. Only the

order of magnitude is important [12j, 12k, 12l, 13h, 13j].
3. Distance metric (Euclidean or cosine) is not significant [13i].
4. Decreasing accuracy with increasing noise [13d].
5. Same optimal λg in the presence of 10% noise [13b].
6. Training over testing ratio: no edge [13g, ...].
7. Self-connections make no difference [14a].
8. Higher performance with a normalized graph Laplacian [14b].
9. K ∈ [10, 20] neighbors is good [14c].
10. And many others34.

3http://nbviewer.ipython.org/github/mdeff/dlaudio_results
4https://lts2.epfl.ch/blog/mdeff
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Classification accuracy

Noise level (standard deviation) 0.0 0.1 0.2
Accuracy using CQT spectrograms [%] 69.7 58.7 46.9
Accuracy with λg = 0 [%] 75.9 57.1 42.6
Accuracy with λg = 100 [%] 78.0 65.9 51.6

Table: Classification accuracies (mean of 20 10-fold cross-validation) on
a subset of GTZAN: Ngenres = 5 genres, Nclips = 100 clips per genre and
Nframes = 149 frames per clip.

I Extracted features increase accuracy by ∼ 7% over baseline
for all scenarios.

I Structure increases accuracy by 2% in the absence of noise.
I Structure provides robustness to noise.
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Conclusion

I Conservation of the structure in the data via graph
regularization (the manifold assumption) is able to denoise the
data.

I Reasonable assumptions:
1. The representation is sparse.
2. The representation preserves the structure.
3. The existence of an encoder was not tested by lack of time.

I Ways to improve accuracy:
I Fine-tune the hyper-parameters.
I Add complexity to the system, e.g. LCN or individual octaves.
I Construct better graphs, e.g. no KNN approximation.
I Work on a bigger dataset.
I Multiple layers to extract hierarchical features.
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