MASTER THESIS

Major in Information Technologies

STRUCTURED AUTO-ENCODER

WITH APPLICATION TO MUSIC GENRE RECOGNITION

Student
Michaël Defferrard
Professor
Pierre Vandergheynst

Supervisors
Xavier Bresson
Johan Paratte

EPFL LTS2 Laboratory July 3, 2015

Introduction

- ▶ Objective: unsupervised representation learning toward the goal of automatic features extraction.
- Model: we introduce the structured auto-encoder, an hybrid auto-encoder variant, which preserves the structure of the data while transforming it in a sparse representation.
- ▶ Ideas: borrowed from sparse coding and manifold learning.
- ► Application: the proposed model shall be evaluated through a classification task. We propose an application in Music Information Retrieval (MIR).

Overview

Introduction

Algorithm

Background

Model

Related works

Optimization

Application

Music genre recognition

System

Implementation

Results

Conclusion

Auto-encoders

A kind of feed-forward neural network

Assumptions

- 1. Sparse representation: we make the hypothesis that a set of sample signals drawn from the same distribution can be sparsely represented in some frame.
- Manifold assumption, i.e. structured data: we assume that the data is drawn from sampling a probability distribution that has support on or near to a submanifold embedded in the ambient space.
- Encoder: we further make the assumption that a simple encoder can be learned to avoid the need of an optimization process that extracts the features during testing, i.e. when the model is trained.

Definitions

- ▶ A set $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^N \in \mathbb{R}^{n \times N}$ of N signals of dimensionality n.
- ▶ The set $\mathbf{Z} = \{\mathbf{z}_i\}_{i=1}^N \in \mathbb{R}^{m \times N}$ of their associated representations of dimensionality m.
- ▶ A dictionary (frame) $\mathbf{D} \in \mathbb{R}^{n \times m}$ of learning capacity m.
- ▶ A trainable direct encoder $\mathbf{E} \in \mathbb{R}^{m \times n}$.

Linear regression

Find a representation

A signal $\mathbf{x} \in \mathcal{X} = \operatorname{span} \mathbf{X} \subset \mathbb{R}^n$, where \mathcal{X} is the subspace spanned by the input data, is represented by $\mathbf{z} \in \mathbb{R}^m$ with a reconstruction error $\epsilon \in \mathbb{R}^n$.

Model:

$$\mathbf{x} = \mathbf{D}\mathbf{z} + \epsilon$$
.

Ordinary least squares:

$$\mathbf{z}^* = \mathop{\mathsf{arg\,min}}_{\mathbf{z}} \|\mathbf{x} - \mathbf{D}\mathbf{z}\|_2^2 = (\mathbf{D}^T\mathbf{D})^{-1}\mathbf{D}^T\mathbf{x}.$$

Sparse coding

Regularize the ill-posed linear regression model

Motivations:

- Succinct representation of the signal, explanatory.
- ▶ Easier linear separability due to higher dimensionality (m > n).

Sparse coding:

$$\mathbf{z}^* = \operatorname*{arg\,min} rac{\lambda_d}{2} \|\mathbf{x} - \mathbf{D}\mathbf{z}\|_2^2 + \lambda_z \|\mathbf{z}\|_0.$$

Basis Pursuit approximation:

$$\mathbf{z}^* = \operatorname*{arg\,min} rac{\lambda_d}{2} \|\mathbf{x} - \mathbf{D}\mathbf{z}\|_2^2 + \lambda_z \|\mathbf{z}\|_1.$$

Dictionary learning

Learn adaptive features

Motivations:

- ▶ Hand-crafted features are hard to design.
- ► Adaptive dictionary leads to more compact representation and discovery of previously unknown discriminative features.
- ► A strategy employed in the cortex for visual and auditory processing.

$$\label{eq:minimize} \begin{split} \underset{\mathbf{Z},\mathbf{D}}{\text{minimize}} & \quad \frac{\lambda_d}{2} \|\mathbf{X} - \mathbf{D}\mathbf{Z}\|_{\text{F}}^2 + \lambda_z \|\mathbf{Z}\|_1 \\ & \text{s.t. } \|\mathbf{d}_i\|_2 \leq 1, \ i = 1, \dots, m. \end{split}$$

Manifold learning

Structured representation

Motivation: exploit the geometrical structure of the data space.

Similarity graph:

$$w_{ij} = \exp\left(-rac{\|\mathbf{x}_i - \mathbf{x}_j\|_2^2}{2\sigma^2}
ight) \in [0,1] \quad ext{ and } \quad a_{ii} = \sum_{j=1}^N w_{ij}.$$

Combinatorial graph Laplacian:

$$\mathbf{L} = \mathbf{A} - \mathbf{W}$$
, with $\mathbf{W} = (w_{ij}) \in \mathbb{R}^{N \times N}$ and $\mathbf{A} = (a_{ij})$.

Manifold learning

Structured representation

The Laplacian as a difference operator on the graph signal $\mathbf{y} \in \mathbb{R}^N$:

$$(\mathbf{L}\mathbf{y})_i = \sum_{j=1}^N w_{ij}(y_i - y_j).$$

Promote smoothness on the data manifold by minimizing the Dirichlet energy:

$$\operatorname{tr}(\mathbf{ZLZ}^T) = \sum_{i=1}^{N} \sum_{i=1}^{N} w_{ij} \|\mathbf{z}_i - \mathbf{z}_j\|_2^2 \geq 0.$$

Auto-encoder

Train an explicit encoder

Objective function as an energy formulation:

$$\underbrace{\frac{\lambda_d}{2}\|\mathbf{X} - \mathbf{D}\mathbf{Z}\|_F^2}_{f_d(\mathbf{Z},\mathbf{D})} + \underbrace{\frac{\lambda_z\|\mathbf{Z}\|_1}{f_z(\mathbf{Z})} + \underbrace{\frac{\lambda_g}{2}\operatorname{tr}(\mathbf{Z}\mathbf{L}\mathbf{Z}^T)}_{f_g(\mathbf{Z})} + \underbrace{\frac{\lambda_e}{2}\|\mathbf{Z} - \mathbf{E}\mathbf{X}\|_F^2}_{f_e(\mathbf{Z},\mathbf{E})}.$$

Auto-encoder model.

Given a training set \mathbf{X} , fix the hyper-parameters $\lambda_d, \lambda_z, \lambda_g, \lambda_e \geq 0$, construct the graph Laplacian \mathbf{L} and

minimize
$$f_d(\mathbf{Z}, \mathbf{D}) + f_z(\mathbf{Z}) + f_g(\mathbf{Z}) + f_e(\mathbf{Z}, \mathbf{E})$$

s.t. $\|\mathbf{d}_i\|_2 \le 1$, $\|\mathbf{e}_k\|_2 \le 1$, $i = 1, ..., m$, $k = 1, ..., m$

to learn the model parameters **D** and **E**.

Approximation schemes

Encoder: find the representation z of an unseen sample x.

$$\mathbf{z}^* = \operatorname*{arg\,min}_{\mathbf{z}} \frac{\lambda_d}{2} \|\mathbf{x} - \mathbf{D}\mathbf{z}\|_2^2 + \lambda_{\mathbf{z}} \|\mathbf{z}\|_1 + \frac{\lambda_g}{2} \langle \mathbf{z}, \mathbf{L}\mathbf{z} \rangle + \frac{\lambda_e}{2} \|\mathbf{z} - \mathbf{E}\mathbf{x}\|_2^2$$

Direct: $\tilde{\mathbf{z}} = \underset{\mathbf{z}}{\arg\min} \frac{\lambda_e}{2} \|\mathbf{z} - \mathbf{E}\mathbf{x}\|_2^2 + \lambda_z \|\mathbf{z}\|_1 = h_{\lambda_z/\lambda_e}(\mathbf{E}\mathbf{x}) \approx \mathbf{z}^*$ where h_{λ} is a shrinkage function.

Decoder: find the reciprocal sample \mathbf{x} of a representation \mathbf{z} .

$$\mathbf{x}^* = \operatorname*{arg\,min} rac{\lambda_d}{2} \|\mathbf{x} - \mathbf{D}\mathbf{z}\|_2^2 + rac{\lambda_e}{2} \|\mathbf{z} - \mathbf{E}\mathbf{x}\|_2^2$$

Direct:
$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\arg\min} \frac{\lambda_d}{2} \|\mathbf{x} - \mathbf{Dz}\|_2^2 = \mathbf{Dz} \approx \mathbf{x}^*$$
.

Related works

Standard auto-encoders: learn ${\bf D}$ and ${\bf E}$ with an ℓ_2 fidelity term (and non-linear activation functions), without any explicit regularization on ${\bf Z}$.

Sparse auto-encoders: learn ${\bf D}$ with an ℓ_2 fidelity term and an ℓ_1 regularization on ${\bf Z}$.

Predictive sparse decomposition: add an explicit encoder \mathbf{E} (ℓ_2 fidelity, non-linear activation) to sparse coding.

Denoising auto-encoders: same model as the standard ones, but trained with stochastically corrupted data.

Convex sub-problems

Three inter-dependent but convex sub-problems:

- ▶ Iteratively solve each sub-problem.
- Several (iterative) methods to solve each of them.

Proximal splitting

Solve minimize $f_1(\mathbf{x}) + f_2(\mathbf{x})$ where f_1 is non-smooth and f_2 is differentiable with a β -Lipschitz continuous gradient ∇f_2 .

Proximity operator: $\operatorname{prox}_f \mathbf{x} = \min_{\mathbf{y}} \min_{\mathbf{y}} f(\mathbf{y}) + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$.

$$\mathsf{Forward\text{-}backward:}\ \mathbf{x}^{t+1} = \underbrace{\mathsf{prox}_{\gamma^t f_1}}_{\mathsf{backward\ step}} \underbrace{(\mathbf{x}^t - \gamma^t \nabla f_2(\mathbf{x}^t))}_{\mathsf{forward\ step}}.$$

FISTA is an efficient scheme which exploits variable time steps and multiple points to achieve an optimal $O(1/t^2)$ rate of convergence.

 $f_2(\mathbf{D})$

Sub-problems casting

For **Z**: minimize
$$f_d(\mathbf{Z}, \mathbf{D}) + f_g(\mathbf{Z}) + f_e(\mathbf{Z}, \mathbf{E}) + f_z(\mathbf{Z})$$

- $ightharpoonup \operatorname{\mathsf{prox}}_{eta^{-1}f_1}(\mathsf{Z}) = h_{\lambda_{\mathsf{z}}/eta}(\mathsf{Z})$

For **D** (and similarly **E**): minimize
$$\frac{\lambda_d}{2} \|\mathbf{X}^T - \mathbf{Z}^T \mathbf{D}^T\|_{\mathsf{F}}^2 + \iota_C(\mathbf{D})$$

- $\beta \geq \lambda_d \|\mathbf{Z}\mathbf{Z}^T\|_2$
- $lackbr{\hspace{0.5cm}}$ $\operatorname{prox}_{eta^{-1}f_1}(\mathbf{D}) = \left\{ rac{\mathbf{d}_i}{\max(1,\|\mathbf{d}_i\|_2)}
 ight\}_{i=1}^m$

Music genre recognition

- ▶ Problem: automatically recognize the musical genre of an unknown clip without access to any meta-data.
- Training data: a set of labeled clips.
- Classification accuracy used as a proxy to assess the discriminative power of the learned representations.
- ► GTZAN dataset: 1000 30-second audio clips with 100 examples in each of 10 different categories: blues, classical, country, disco, hiphop, jazz, metal, pop, reggae and rock.

System

Implementation²

- 1. Tools: numpy, scipy, matplotlib, scikit-learn, h5py, librosa, PyUNLocBoX¹, IPython notebook, OpenStack lab cluster.
- Notebooks: model construction, test on images, dataset conversion to HDF5, pre-processing, graph construction, auto-encoder model, features extraction, classification and test, experiments.

3. Performance:

- Optimization for space: avoid copies, modify in place, float32, store Z as a scipy sparse matrix.
- Optimization for speed: ATLAS/OpenBLAS, float32 (memory bandwidth), efficient trace, projection in the ball (not on the sphere), approximate KNN search with FLANN.

¹https://github.com/epfl-lts2/pyunlocbox

²https://github.com/mdeff/dlaudio

Typical learning

dictionary.

Figure: Learned dictionary **D** and representation **Z** of spectrograms.

representation.

Typical convergence

- Sub-problem objectives: f₂(Z), f₁(Z), f₂(D) and f₂(E).
- Sub-objectives: $f_d(\mathbf{Z}, \mathbf{D})$, $f_e(\mathbf{Z}, \mathbf{E})$, $f_z(\mathbf{Z})$ and $f_g(\mathbf{Z})$.
- Global objective $f_d(\mathbf{Z}, \mathbf{D}) + f_e(\mathbf{Z}, \mathbf{E}) + f_z(\mathbf{Z}) + f_g(\mathbf{Z})$.

Experiments

Backed up by simulation reports

- 1. Better convergence correlates with higher performance [12i].
- 2. Hyper-parameters do not have a huge influence. Only the order of magnitude is important [12j, 12k, 12l, 13h, 13j].
- 3. Distance metric (Euclidean or cosine) is not significant [13i].
- 4. Decreasing accuracy with increasing noise [13d].
- 5. Same optimal λ_g in the presence of 10% noise [13b].
- 6. Training over testing ratio: no edge [13g, ...].
- 7. Self-connections make no difference [14a].
- 8. Higher performance with a normalized graph Laplacian [14b].
- 9. $K \in [10, 20]$ neighbors is good [14c].
- 10. And many others³⁴.

³http://nbviewer.ipython.org/github/mdeff/dlaudio_results

⁴https://lts2.epfl.ch/blog/mdeff

Classification accuracy

Noise level (standard deviation)	0.0	0.1	0.2
Accuracy using CQT spectrograms [%]	69.7	58.7	46.9
Accuracy with $\lambda_g = 0$ [%]	75.9	57.1	42.6
Accuracy with $\lambda_g=100~[\%]$	78.0	65.9	51.6

Table: Classification accuracies (mean of 20 10-fold cross-validation) on a subset of GTZAN: $N_{genres} = 5$ genres, $N_{clips} = 100$ clips per genre and $N_{frames} = 149$ frames per clip.

- ightharpoonup Extracted features increase accuracy by $\sim 7\%$ over baseline for all scenarios.
- ▶ Structure increases accuracy by 2% in the absence of noise.
- Structure provides robustness to noise.

Conclusion

- Conservation of the structure in the data via graph regularization (the manifold assumption) is able to denoise the data.
- Reasonable assumptions:
 - 1. The representation is sparse.
 - 2. The representation preserves the structure.
 - 3. The existence of an encoder was not tested by lack of time.
- Ways to improve accuracy:
 - Fine-tune the hyper-parameters.
 - Add complexity to the system, e.g. LCN or individual octaves.
 - ▶ Construct better graphs, e.g. no KNN approximation.
 - Work on a bigger dataset.
 - Multiple layers to extract hierarchical features.

Questions?