
Introduction to Computer Graphics
Project stage 2: Rendering
Group 19

EPFL
5th May, 2014

1/7

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

1 Overview

This report presents our advancement on the second part of the project : rendering using
texture mapping and shadowing.

2 Implementation

2.1 Basics

2.1.1 Texturing

In this part, our idea is that we can use whatever texture that we want, whatever method
or way of blending that we want as long as the terrain looks realistic. Also, the way we
implement texture blending is trial and errors, we try many di�erent ways of blending and
continue in the direction that generates better results.

Figure 1: The terrain with blended texture.

2.1.2 Modeling the sky

For this part, the idea is very straightforward as we try to render two objects : terrain and
a textured cube covered the terrain and display them together on the screen. However, it
is very time-consuming to implement but good things are after �nishing this part, we can
gain a very solid understanding of OpenGL vertex bu�er mechanism.

To render multiple objects together, before rendering each object, we set its frame bu�er
as a render target and bind the vertex array of that object. In addition, we use separate
program to render each object, so before drawing it, we need to call glUseProgram in
OpenGL.

To texturize the skybox with sky images, we make use of GL_CUBE_MAP_SEAMLESS option
in OpenGL to get rid of the problem with seams. We also note that for high-resolution
texture �les, which are 1024 · 1024 · 3 = 3MB each, are too big to be allocated on the stack
so they need to be placed also on the heap.

The results of this part is shown in Figure 2.

Introduction to Computer Graphics
Project stage 2: Rendering
Group 19

EPFL
5th May, 2014

2/7

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

Figure 2: The terrain covered by a sky box.

2.1.3 Self shadowing

The shadow mapping is implemented by a third C++ class : the ShadowMap. See section 3.1
for a discussion on the object oriented refactoring of our code base. This class shares the
same Vertex array object (thus the vertices and indices bu�ers) as the Terrain class. It
renders to a depth texture which is then passed to the Terrain class as an input texture.
Figure 3 shows this texture for two di�erent light source positions.

(a) Light source at (0,3,0) (b) Light source at (3,0,0)

Figure 3: Shadow maps

2.2 Advanced

2.2.1 Approximating water re�ections/refractions

2.2.2 Water depth e�ect (participating media)

2.2.3 Water dynamics

For this part, we follow a very simple approach. In the vertex shader of the terrain
generation, for only vertices belonging to the water region, we displace it in z-direction by
a sin function of x and y position (up to a scale). We also pass a uniform variable time to
control the phase of the displacement. Even this is super simple but the result is pretty
good.

In addition, we also do normal mapping for water region. Instead of calculating the normal
like other regions, we do a normal vector lookup in the normal map and use that vector
for shading.

Introduction to Computer Graphics
Project stage 2: Rendering
Group 19

EPFL
5th May, 2014

3/7

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

2.2.4 Time of the day

3 Improvements on last stage

3.1 Code modularization using object oriented programming

We re-factored our code base to use an object oriented paradigm. This allows better mod-
ularization and generalization. The idea is to have a base class (RenderingContext) who
de�nes the interface and implements common methods. The contexts (Terrain, Skybox
and Shadow) then inherits from it and implement further specializations. This simpli�es the
manipulation of the contexts from the main program as they all have the same interface.
A common implementation also limits code duplication.

This is similar to what is proposed in the hand-out. With however a major di�erence : we
wanted to separate the class declaration and de�nition (i.e. implementation) in a header
and a source �le. There is two motivations behind this : putting the declaration in a
header makes it easy for the class user to identify methods and parameters he can use;
putting the de�nition in a separate compilation unit isolates the code.

The problem we encountered with this approach is that the OpenGP headers (included
from common.h) do not contain only declarations, but also de�nitions (i.e. code). Such that
we cannot include the common.h header in more than one compilation unit. If we did so,
the linker would complain appropriately about multiple de�nitions of the same functions.
We thus created an opengp.h header who declares (and not de�nes) the functions and
constants from OpenGP used in our project. Their de�nitions (included from common.h)
are solely included in the main compilation unit. This is a workaround but it allows to use
a proper object oriented paradigm with one declaration and one de�nition �le per object
without modifying the provided framework.

3.2 Parameter tuning for better terrain generation

In order to �nd a better terrain, several combination method has been tested. The �rst idea
was to use an hybrid multi fractal method based on 1 minus the absolute value generated
by perlin noise. After tuning parameters, we found a terrain counting few lacs and really
sharp mountains as shown Figure 4a. Such terrain doesn't contain �at plain, therefor
we tested a multi fractal method combining perlin and simplex noise as shown Figure
4b. Oppositely to the hybrid multi-fractal, this method generates �at plains but smooth
mountains.

Introduction to Computer Graphics
Project stage 2: Rendering
Group 19

EPFL
5th May, 2014

4/7

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

(a) Hybrid multi-fractal based on Perlin
noise

(b) Multi-fractal based on perlin and sim-
plex noise

Figure 4: Terrain generated

As we developed several generating method in project part 1, an idea is to combine them.
Additive combination: sum the product of a coe�cient and the height generated by fractal
Brownian motion, multi-fractal (simplex noise based), multi-fractal(perlin noise based),
simplex noise and perlin noise. The sum of coe�cients must be equal to 1 in order to have
a balanced and well scaled terrain. As we have 5 coe�cients variating from 0.1 to 1.0, we
have 102 possible combinations (for a sum of coe�cient equal to 1). We used an external
software called "autoit" to generate the 102 combinations. Using autoit, we wrote a loop
setting the coe�cients, generating the terrain and saving a snapshot of it. Two example
of generated terrain using this method are shown Figures 5a, 5a.

(a) Example 1 (b) Example 2

Figure 5: Additive combination

Random combination: use di�erent noise and multi-fractal methods according to a ran-
domly generated number. Using randomly a di�erent noise per pixel leads to a highly
discontinuous terrain with abrupt change of height as shown Figure 6

Introduction to Computer Graphics
Project stage 2: Rendering
Group 19

EPFL
5th May, 2014

5/7

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

Figure 6: Random combination

Spatial combination: use several noise and multi-fractal methods multiplied by a coe�cient
computed according to the x or y position. This method will smoothly superpose di�erent
terrain generation methods creating sharp mountains with lacs and �at plains as shown
�gures 7a and 7b.

(a) Example 1 (b) Example 2

Figure 7: Spatial combination

3.3 Fixing normal vector calculation

The normal vector calculation implemented in previous stage is actually not correct but
only until we try to blend the texture based on the normal vector that we recognize that
the results are not correct. While it costs us a lot of time to re-implement normal vector
calculation, the experience that we learned when correcting the normal vector is really
invaluable for further understanding OpenGL pipeline.

Firstly, we map the world coordinate to a texel before using textureOffset function to
look up the height of surrounding texels in both x and y direction. A �nite di�erence is
used to approximate the tangent vector to the surface at that point on the height map
then �nally, a normal vector will be just the cross product of tangent vectors along x and
y directions.

In addition, the above normal vector is just in height map coordinate (ranging from [0, 1]×
[0, 1] in xy plane) so we need to map it to our world coordinate of the grid ([-1,1] in xy
plane). Note that when transform the normal vector, we actually need to multiply it with
the inverse of transpose matrix of the transformed one.

To test the normal vector, we output it as the color of each fragment as shown in Figure 8.
We can see that the result is quite reasonable, for example in the ground part as it is �at

Introduction to Computer Graphics
Project stage 2: Rendering
Group 19

EPFL
5th May, 2014

6/7

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

region, the normal vector should be (0,0,1) and as a result, its color is blue.

Figure 8: The terrain is colored by its own normal vector.

4 Results

In order to quantify the computation power needed and estimate the e�ciency of our
program, we proceeded FPS measurements. We measured the amount of frame per second
in di�erent case:

• Only terrain display with N = 32 (1024 vertices): 254 FPS

• Only terrain display with N = 64 (4096 vertices): 176 FPS

• Only terrain display with N = 128 (16384 vertices): 114 FPS

• Terrain and skybox (N = 128) : 108 FPS

• Terrain, skybox and water animation (N = 128) : 109FPS

We can observe that as expected the amount of frames per second decrease with the
increasing amount of vertices. The skybox have a really low "cost" (decrease of 6 FPS
corresponding to 5.2 %) and the water animation (just mooving the texture) is negligible.

5 Project managing tools

As we never work together in the same place, we need some e�cient communication tools.
During the �rst part of the project, we communicated per Email and reached over 100
mails. In order to have a clear communication, avoid time loss and improve clearness of
our project progress, we used a tool called Trello (https://trello.com). It's a simple
tool allowing list managing with a simple and e�cient interface (�gure 9).

https://trello.com

Introduction to Computer Graphics
Project stage 2: Rendering
Group 19

EPFL
5th May, 2014

7/7

Michaël Defferrard
Pierre Fechting
Vu Hiep Doan

Figure 9: Trello interface

	Overview
	Implementation
	Basics
	Texturing
	Modeling the sky
	Self shadowing

	Advanced
	Approximating water reflections/refractions
	Water depth effect (participating media)
	Water dynamics
	Time of the day

	Improvements on last stage
	Code modularization using object oriented programming
	Parameter tuning for better terrain generation
	Fixing normal vector calculation

	Results
	Project managing tools

